Step of Proof: adjacent-member
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
adjacent-member
:
T
:Type,
L
:(
T
List),
x
,
y
:
T
. adjacent(
T
;
L
;
x
;
y
)
{(
x
L
) & (
y
L
)}
latex
by ((Auto
)
CollapseTHEN (((((FLemma `adjacent-before` [-1])
THENM (((
TH
FLemma `l_before_member`[-1])
THENM (FLemma `l_before_member2`[-2]))
))
)
T
CollapseTHENA (Auto
TC
))
))
latex
TC
1
:
TC1:
1.
T
: Type
TC1:
2.
L
:
T
List
TC1:
3.
x
:
T
TC1:
4.
y
:
T
TC1:
5. adjacent(
T
;
L
;
x
;
y
)
TC1:
6.
x
before
y
L
TC1:
7. (
y
L
)
TC1:
8. (
x
L
)
TC1:
{(
x
L
) & (
y
L
)}
TC
.
Definitions
adjacent(
T
;
L
;
x
;
y
)
,
type
List
,
P
&
Q
,
x
:
A
B
(
x
)
,
,
Type
,
{
T
}
,
x
before
y
l
,
x
:
A
.
B
(
x
)
,
P
Q
,
x
:
A
B
(
x
)
,
(
x
l
)
Lemmas
adjacent
wf
,
l
member
wf
,
guard
wf
,
adjacent-before
,
l
before
member
,
l
before
member2
origin